Hiv Infection Of An Individual Cell example essay topic

2,684 words
Today, tens of millions of people around the world are going to die young because they are infected by HIV, the virus that causes AIDS. The primary AIDS virus is HIV-1, which can be spread via sexual intercourse or drug use (activities, which result in body fluid exchange like blood and semen). HIV can also be passed from mother to child and can also be acquired during blood transfusions. AIDS, Acquired Immune Deficiency Syndrome, is a virus that causes a loss of protection against disease causing microorganisms.

People who are infected by AIDS usually have a decline in the number of T-cells that are responsible for their immune system. Because the virus reproduces by a reversed transcriptase enzyme, it can quickly make a copy of its virus and so, it is difficult to treat with its infinite reproductions. However, scientists have now came up with a combination of drug called "cocktail drugs" to slow down the development of the virus in different life cycles. Introduction HIV, the Human Immunodeficiency Virus, is a disease that merits international concern, study, and research. The diseases that infect individuals over the world are causing theme to lose the functionality of their immune system and finally succumb to one or more opportunistic diseases. AIDS viruses are unbelievably small particles, invisible under an ordinary microscope, but observable with an electron microscope.

All the viruses are tiny packets of genetic material, composed of either DNA or RNA and are surrounded by a protective envelope of protein. HIV belongs to a group of especially tricky viruses called retrovirus. It reverses the usual flow of genetic information within the host cell. Retroviral RNA is copied, using its reverse transcriptase enzyme, into a complementary single strand of DNA.

This single-strand retroviral DNA is then copied into double-stranded retroviral DNA inside the cell's cytoplasm. This retroviral DNA migrates into the host cell's nucleus and becomes integrated into the host cell DNA. It is then a provirus. (Hyde & Forsyth, 1996) 1.0 Retroviruses 1.1 History There are two strains of HIV, HIV-1 and HIV-2. HIV-1 is the more prevalent form and also the one that causes the greater pathology. HIV-2 is a lesser found strain that is endemic to countries in West Africa.

Presently, the majority of those infected with HIV are infected with the HIV-1 strain. When the infection progresses, the patient is diagnosed with acquired immunodeficiency syndrome (AIDS). The first well-documented case of AIDS was found in San Francisco and New York in 1981. A young gay man in San Francisco was found to be suffering from a severe fungal infection to which he had little immune reaction. In fact, his immune system did not appear to respond to any disease. Then he developed Pneumocystis carinii pneumonia (PCP), a type of pneumonia that is caused by parasite.

This disease is usually found only among severely malnourished individuals or people whose immune systems have been impaired by drugs such as those used in the treatment of cancer or in connection with organ transplants. The young man died by the end of the year. Retroviruses are classified into many different categories, but Lentivirus is responsible for human immunodeficiency virus (HIV-1). (Armstrong, 1990) 1.2 T-Cells A characteristic feature of AIDS is the progressive decline in the number of circulating CD 4 T lymphocytes.

Various strains of HIV are cyto pathic for cells from cultured CD 4 cell lines suggesting that direct killing, among other mechanisms, may contribute to depletion of CD 4 T-cells in HIV-infected persons. Cell killing may also be involved in other aspects of HIV pathogenesis, including the induction of neurological dysfunctions. The molecular events that mediate HIV-induced cytopathology have not yet been elucidated, although env gene products have been implicated by many lines of evidence. Studies funded in the previous years of this grant indicate that HIV, like several other cyto lytic viruses, mediates changes in plasma membrane-associated ion transport systems. Scientists proposed studies focus on defining HIV proteins, which mediate the changes in ion flux. Their study found out that one of the HIV proteins may be involved is the transmembrane protein (TM).

Among the regions of TM, there are carboxyl terminal sequences involved. These sequences have the potential to form a strongly amphipathic helix enriched in arginine, a motif shared with monovalent cation channels. HIV also have affects the potassium and sodium ion transport systems. (Armstrong, 1990) 1.3 Structure of AIDS virus There is considerable diversity between various types of retrovirus; the following is a generalized description of the particle. There is a universal nomenclature for retrovirus proteins: Protein Function Matrix matrix protein (gag gene); lines envelope Capsid capsid protein (gag gene); protects the core; most abundant protein in virus particle Nucleocapsid capsid protein (gag gene); protects the genome; forms the core Protease Essential for gag protein cleavage during maturation Integrase Encoded by the pol gene; needed for integration of the provirus Surface glycoprotein The outer envelope glycoprotein; major virus antigen Transmembrane protein The inner component of the mature envelope glycoprotein Reverse transcriptase Reverse transcribes the RNA genome; also has RNAse H activity Retroviruses have enveloped particles and vary in sizes and shapes, but are usually 100 nm in diameter. The envelope carries a virus-encoded glycoprotein, which forms spikes in the membrane.

There are certain structural / functional similarities between the envelope glycoprotein and the influenza haemagglutinin. The mature protein is cleaved into 2 polypeptides: The outer envelope glycoprotein is the major antigen of the virus, responsible for receptor binding, linked by disulphide bonds to: The trans-membrane glycoprotein holds the SU protein in the envelope, responsible for membrane fusion. Inside the membrane is the matrix protein, rather amorphous. Capsid is the most abundant protein in the particle making 33 per cent of the total weight. Inside the capsid is the core, which contains RNA, genome+NC and protein+RT+IN. All retrovirus genomes consist of two molecules of RNA, a 5" " cap and a 3" " poly-A (equivalent to mRNA).

Retrovirus genomes have 4 unique features: They are viruses that are truly diploid. They are the only RNA viruses whose genome is produced by cellular transcriptional machinery, that is, without any participation by a virus-encoded polymerase. They are the only viruses whose genome requires a specific cellular RNA (tRNA) for replication. They are the only RNA viruses whose genome does not serve directly as mRNA immediately after infection. These two molecules are physically linked by hydrogen bonds. (Retroviruses [Online]) 1.4 Replication Shortly after infection, only low amounts of parental infectious material can be identified, this is the so-called eclipse phase.

At this stage, genome replication has been initiated but progeny viruses are not yet released. There is then a maturation phase when viral material accumulates exponentially in the cell or surrounding medium. After a few hours cells infected with lytic viruses become metabolically disordered and viral production ceases. Titres then slowly drop. Cells infected with non-lytic viruses can continue to produce viral particles indefinitely. Infection of a cell may be: productive, the cells are permissive for viral replication and virion progeny are released. abortive, the cells are non permissive for a viral function and virion particles not produced. restrictive, the cell is transiently permissive and a few virus are produced.

Viral production then ceases but the genome persists. This is one of the reasons why some people do not develop AIDS. The replication cycle of HIV is shown: Source: "Retrovirus" (Online) There are several steps involved in the HIV cycle: Source: "AIDS fact sheet" (Online) Attachment Virus attachment consists of specific binding of a viral attachment protein (VAP) to a cellular receptor. Receptor molecules can be proteins (glycoproteins), or the sugar residues present on glycoproteins or glycolipids. Some complex viruses, for example, Pox viruses and Herpesvirus es may have more than one receptor-binding protein, therefore, there may be alternative routes of uptake into cells. The expression or absence of receptors on the surface of cells largely determines the tropism of most viruses, that is, the type of cell in which they are able to replicate.

Penetration Unlike attachment, viral penetration is an energy-dependent process; that is, the cell must be metabolically active for this to occur. Three mechanisms may be involved: Translocation of the entire virion across the cell membrane Endocytosis of the virus into intracellular vacuoles. Fusion of the viral envelope with the cell membrane, which requires the presence of a viral fusion protein in the virus envelop. Uncrating A general term for the events which occur after penetration, in which the capsid is removed and the virus genome exposed, usually in the form of a nucleoprotein complex. This can happen when retrovirus cores are highly ordered nucleoprotein complexes which contain, in addition to the diploid RNA genome, the reverse transcriptase enzyme responsible for converting the viral RNA genome into the DNA provirus. This process occurs inside the core particle.

For viruses that replicate in the cytoplasm, the genome is simply released into the cell, but for viruses that replicate in the nucleus, often with associated nucleoproteins, must be transported through the nuclear membrane. This is achieved by interactions of the nucleoproteins or capsid with the cytoskeleton. At the nuclear pores, the capsid is stripped off, and the genome passes into the nucleus. Gene Expression Control of viral replication is achieved by tight regulation of gene expression and the methods used depend on nature of the virus genome / replication strategy. One advantage of monocistronic mRNAs is that various proteins can be produced in different amounts, rather than in a constant ratio.

Non-segmented genomes tend to produce polycistronic mRNA, which is translated to form a polyprotein, processed by proteolytic cleavage to form the mature gene products. To utilize the cellular machinery, viral mRNAs must contain control signals which are recognized by the cell. Assembly This involves the assembly of all the components necessary for the formation of the mature virion at a particular site in the cell. During this process, the basic structure of the virus is formed. Release For lytic viruses, release is a simple process – the cell breaks open and releases the virus. Enveloped viruses acquire the lipid membrane as the virus buds out through the cell membrane.

Virion envelope proteins are picked up during this process as the virus is extruded. Budding may or may not kill the cell, but is controlled by the virus – the physical interaction of the capsid proteins on the inner surface of the cell membrane forces the particle out through the membrane: Maturation The stage of the life cycle at which the virus becomes infectious. Usually involves structural changes in the particle, often resulting from specific cleavage of capsid proteins to form the mature products, which frequently leads to a conformational change in the capsid, or the condensation of nucleoproteins with the genome. For some viruses, assembly and maturation are inseparable, whereas for others, maturation may occur after the virus particle has left the cell. (Retroviruses [Online]) 2.0 Transcription The transcription of RNA in AIDS is caused by reverse transcriptase enzyme.

This enzyme changes HIV's genetic material (RNA) into the form of DNA. This step has to occur before HIV's genetic code gets combined with an infected cell's own genetic codes. Within the host cell nucleus, pro viral DNA, when activated, produces new strands of RNA. Some RNA is used as mRNA to produce proteins for making HIV.

Other RNA becomes encased within the viral core proteins to become the new viruses. The RNA strands that are splices become the mRNA strands used in protein synthesis. The un spliced RNA strands serve as new viral strands that are encased in their protein coats (capsids) to become new viruses that bud out of the cell. Source: "Retrovirus – Transcription" (Online) There are two distinct phases of transcription follow the HIV infection of an individual cell. Firstly, the RNA strands produced in the cell's nucleus are snipped into multiple copies of shorter sequences by cellular splicing enzymes. When they reach the cytoplasm they are only about 2,000 nucleotides in length.

These early-phase short transcripts encode only the virus' regulatory proteins. The regulatory proteins and the structural genes that constitute the rest of the genome are among parts that are left behind. In the second, or late phase, two new size classes of RNA move out of the nucleus and into the cytoplasm. (Comic & Swisher, 1991) 3.0 Treatment Although scientists have not came up with sufficient treatments for AIDS, researchers have found several ways to suppress HIV reproductions: 3.1 Tat Toxoid Robert Gallo, a co-discoverer of HIV has published significant findings using an experimental vaccine for an AIDS-like illness in rhesus macaques (monkeys). The vaccine did not prevent infection, but did weaken the disease with undetectable viral loads, CD 4 counts that remained within normal limits, and other parameters, when compared to control animals. Tat is a protein produced by HIV that has been linked with several components of HIV disease.

In laboratory tests, immune cells treated with Tat have a lesser response to new, foreign antigens (infections) and can enhance HIV growth in those cells. Tat also increases levels of fas ligand on immune mononuclear cells, a precursor to apoptosis (programmed cell death). This is thought to be one possible component that leads to decreased CD 4 counts. Lastly, Tat increases the number of chemokine (intercellular "messengers") receptors on immune cells that HIV partly uses to enter them. Scientists found out that among those monkeys, who developed both types of immune responses to Tat, "88% were protected against high level virus replication". It should be emphasized, however, that the vaccine did not protect against infection, but led to viral load levels that were attenuated in many animals.

(Drugs and AIDS, 1994) 3.2 Chinese Herbal Medicines The Chinese herbal medicine is known as an energy balancing treatment for people with unbalanced "yin" and "yang". Chinese herbs do not cure HIV infection. However, many people believed that the herbs have helped them to improve their overall energy, or deal with the side effects of antiviral medications. Some people have used herbs to reduce the upset stomach or diarrhea caused by their medications. The reason for this is because Chinese herbs generally strengthen the immune system and therefore eliminate the chance of getting sick of an AIDS infected person. (Drugs and AIDS, 1994) 3.3 Cocktail Drugs Cocktail drugs are known as a combination of a variety of protease inhibitor Invirase, Nucleoside Analogues and Hiv id? , which can all help to reduce the time to disease progression or death by more than 50 percent.

These drugs combine to attack and slow down the replication and transcription of the RNA in the virus. Therefore, the patient can live longer because the drugs are slowing down the speed of disease development. (Protease Works [Online]) Conclusion The true impact of AIDS is now fully known for many years for it produced profound changes in society. Although there are still questions in the minds of some individuals about whether AIDS should be treated as a medical or a moral problem, an increasing number are asking what can be done to best serve the dignity, liberty, and health of those who are infected, as well as to prevent new infections in the name of public health. While it is the duty of the infected not to spread the virus, it is the responsibility of the community to provide education, compassion, and support.