Particle Size Of The Catalyst example essay topic
Oxygenated hydrocarbons are also valuable intermediates for industry. 'The prospect of selective oxidation using molecular oxygen without the addition of additives over a new catalyst is exciting,' comments Jeroen van Bokhoven, from the Institute for Chemical and Bioengineering at ETH Zurich, Switzerland. 'There seems to be space for trying the catalyst out on more systems and for improving the selectivity,' van Bokhoven adds. The catalyst consists of 55-atom gold clusters, which form nanometer-sized particles on inert supports. The Au 55 particles are so-called 'magic number' clusters that contain exactly the right number of atoms for very stable geometries, making them ideally suited to catalysis. However, the particle size of the catalyst is critical.
While 1.4 nm diameter particles were effective and robust catalysts, particles 2 nm or larger have no catalytic activity. The researchers used x-ray photoelectron spectroscopy to show that the nano-clusters have a different electronic structure to bulk gold. 'As the particles become smaller, their electronic structure changes significantly,' explains Armbr " uster. The organic reactant only weakly adsorbs to the catalyst, so that its electronic structure is not perturbed. 'We don't know exactly how the catalyst works but we really want to understand what is going on,' says Armbr " uster. 'We think that quantum chemistry might be the easiest way to find out what is happening,' he adds.
'We also need to do further lab work, for example to discover the catalyst's lifetime and to establish the influence of different loadings of the catalyst. ' The research team hopes that its gold clusters will provide a route to the synthesis of robust gold catalysts with practical applications for synthetic chemistry. 'We are quite some way off an industrial catalyst, but we see no barrier to gold clusters as an eventual route to gold catalysts of real industrial relevance,' says Mark Turner, who worked with Lambert on the project. 'What's more, they offer the opportunity of carrying out industrially important ep oxidation reactions with true atom economy - using only oxygen. ' Emma Davies web Summary of: Gold's magic number Using styrene oxidization, a process that combines styrene (a colorless, water-insoluble liquid) with oxygen, as a test reaction, chemists in the United Kingdom were able to develop a new gold catalyst which uses O 2 as the only Oxidant. Developing a new gold catalyst is important because of the gold particles contain exactly the correct number of atoms needed for very stable surfaces- the particles are even called 'the magic number: 55 Atoms.
The UK team will now be working to find out the lifespan of the catalyst and to figure out exactly how the catalysts work and they believe this will be easiest done through quantum chemistry. How this article relates to my life This article relates to my life because of things like petroleum refining; petroleum refining makes great use of catalysts in catalytic cracking, the breaking of long chain hydrocarbons into smaller pieces. Also, the exhausts from burning fossil fuels are treated using catalysts; in automobiles, catalytic converters are used to break down some of the more harmful byproducts in exhaust.